| Dynamics – MCQ's 1. Laws of motion was presented by: (a) Einstein (b) Newton ✓ (c) Galileo (d) Archimedes | |--| | 2. Isaac Newton described the laws of motion in his famous book: (a) Qanoon-ul-Masoodi (b) Principia Mathematica ✓ (c) Kitab-ul-Astralab (d) Al-Manazir | | 3. The laws of motion established the relationship between motion and ——: (a) Force ✓ (b) Torque (c) Acceleration (d) Momentum | | 4. First law of motion is also known as law of ———: (a) Torque (b) Acceleration (c) Inertia ✓ (d) None of these | | 5. — of a body is the direct measure of inertia: (a) Mass ✓ (b) Energy (c) Momentum (d) All of above | | 6. The characteristic of a body due to which it tends to retain its state of rest or of uniform motion is known as: (a) Weight (b) Force (c) Inertia (d) Momentum | | 7. ——— is the agency which changes or tends to change the state of rest or of uniform motion of a body: (a) Weight (b) Force (c) Inertia (d) Momentum | | 8. Law of inertia is actually the ——————————————————————————————————— | | 9. When a force is applied on the body, ——— is produced in the body: (a) Weight (b) Acceleration ✓ (c) Energy (d) None of the above | | 10. The acceleration produced in a moving body is always in the direction of applied ———————————————————————————————————— | | (d) Momentum | |---| | 11. If mass of the body is doubled while keeping the force constant, then acceleration will be: (a) One half ✓ (b) doubled (c) One fourth (d) Four times | | 12. If force applied on the body is doubled while keeping the mass constant, then acceleration will be: (a) One half (b) doubled (c) One fourth (d) Four times | | 13. SI unit of force is: (a) Kilogram (b) Dynes (c) newton ✓ (d) Pound | | 14. When a force of 8 newton is applied on a body of mass 2 kg, then the acceleration produced will be: (a) 16 ms-2 (b) 4 ms-2 (c) 0.4 ms-2 (d) 160 ms-2 | | 15. 1 N = ———— (GRW 2014) (a) kgms-2 | | 16. Action and reaction are equal in magnitude but opposite in direction is known as ——————————————————————————————————— | | 17. Walking on road is an example of ——————————————————————————————————— | | 18. When a block is lying on a smooth surface, its weight is balanced by: (a) Mass (b) Momentum (c) Inertia (d) Normal Reaction ✓ | | 19. The weight of a body of mass 10 kg on earth will be ———: (a) 10 N (b) 1 N (c) 100 N ✓ (d) 1000 N | | 20. The ———— of a body always acting towards the center of the earth:(a) Mass(b) Force | | (c) Velocity (d) Weight ✓ | |--| | 21. Quantity of matter in a body: (a) Mass ✓ (b) Force (c) Velocity (d) Weight | | 22. The Force with which earth attracts a body towards its centre is known as: (a) Mass (b) Force (c) Weight ✓ (d) Inertia | | 23. The characteristic of a body which determines the magnitude of acceleration produced when a certain force acts upon it: (a) Mass ✓ (b) Force (c) Inertia (d) Weight | | 24. Mass of the body is measured by: (a) Free Fall Apparatus (b) Physical balance (c) Spring balance (d) All of above | | 25. Weight of the body is measured by: (a) Free Fall Apparatus (b) Physical balance (c) Spring balance (d) All of above | | 26. Unit of weight is: (a) kg (b) ms-1 (c) Nm (d) N ✓ | | 27. ——— of a body remains same every where: (a) Weight (b) Acceleration (c) Velocity (d) Mass ✓ | | 28. — of a body does not remain same every where: (a) Weight (b) Inertia (c) Mass (d) All of above | | 29. The value of weight of a body of constant mass depends on: (a) Inertia (b) Momentum (c) Force (d) 'g' ✓ | | 30. Mass is a ———— quantity: | | (a) Scalar / (b) Vector (c) Derived (d) Negative | |---| | 31. Weight is a ——— quantity: (a) Scalar (b) Vector ✓ (c) Unitless (d) Negative | | 32. When a block is hanging with the help of a rope then weight of the body is balanced by: (a) Acceleration (b) Inertia (c) Displacement (d) Tension ✓ | | 33. There are —— cases of motion of the body hanging with the help of rope: (a) 1 (b) 2 (c) 3 (d) 4 | | 34. The tension produced when one body moves vertically and the other moves horizontally is ——————————————————————————————————— | | 35. Quantity of motion in a body is known as: (a) Mass (b) Momentum (c) Velocity (d) Acceleration | | 36. Product of mass and velocity is known as: (a) Force (b) Speed (c) Momentum ✓ (d) Acceleration | | 37. SI unit of Momentum is: (GRW 2013, LHR 2015) (a) Kgms-2 (b) Ns (c) Kgms-1 (d) Both b & c ✓ | | 38. Kgms-1 = ——————————————————————————————————— | | 39. Rate of change of momentum is equal to: (a) Force ✓ (b) Velocity (c) Acceleration (d) Impulse | | 40. Direction of the rate of change of momentum is in the direction of: (a) Acceleration (b) Momentum (c) Velocity (d) Force ✓ | |---| | 41. The force which resists the motion of one surface on another surface is known as: (a) Gravity (b) Friction ✓ (c) Weight (d) Repulsion | | 42. When object is at rest, the force of friction is known as ——————————————————————————————————— | | 43. The maximum value of static friction is known as ——————————————————————————————————— | | 44. When an object is in motion then the force of friction is known as —friction: (a) Static (b) Limiting (c) Kinetic ✓ (d) Dynamics | | 45. Static friction is — than kinetic friction: (a) Less (b) Quartered (c) Greater ✓ (d) Equal | | 46. Rolling friction is — than Sliding friction: (a) Less ✓ (b) Quartered (c) Greater (d) Equal | | 47. The coefficient of friction has — unit: (a) Newton (b) Dynes (c) No (d) Kilogram | | 48. Friction of liquids is ————————————————————————————————— | | 49. Coefficient of friction does not depend upon the — between two surfaces: (a) Area of contact ✓ (b) Normal Reaction (c) Weight | | (d) Roughness | |---| | 50. The rolling friction is about — times smaller than sliding friction: (a) 10 (b) 50 (c) 100 ✓ (d) 1000 | | 51. Friction in the human joints is much reduced due to the presence of: (a) Bones (b) Muscles (c) Fluid ✓ (d) Gas | | 52. Value of coefficient of friction (μk) depends upon: (a) Nature of the surfaces ✓ (b) Area of contact (c) Force (d) All of above | | 53. The Rotation of water sprinkler is an example of ——————————————————————————————————— | | 54. A spider web remains intact due to: (a) Weight (b) Momentum (c) Tension ✓ (d) None of these | | 55. Momentum of a moving body depends upon its: (a) Mass (b) Velocity c) Weight (d) Both a & b ✓ | | 56. Motion of the rocket is an example of: (a) First law of motion (b) Law of conservation of Momentum ✓ (c) Law of conservation of Energy (d) Weight | | 57. Value of coefficient of static friction (μs) is usually ——————————————————————————————————— | | 58. When air is released from an inflated balloon, it shoots off is an example of: (a) First law of motion (b) Law of conservation of Energy (c) Weight (d) Law of conservation of Momentum ✓ | | 59. Sliding friction is commonly converted into Rolling friction by the use of:(a) Ball bearing ✓(b) Oil | - (c) Grease (d) Polish (b) Pressure(c) Speed(d) Friction ✓ - 60. The front sides of high speed vehicles, aeroplanes and ships are shaped wedge like to reduce: (a) Weight